def mnist_cnn(args, input_image):
shape = (args.channels, args.height, args.width)
x = Convolution2D(32, 5, 5,
activation='relu',
border_mode='valid',
input_shape=shape)(input_image)
x = MaxPooling2D((2,2))(x)
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(x)
x = Dropout(0.2)(x)
x = MaxPooling2D((2,2))(x)
x = Flatten()(x)
x = Dense(128, activation='relu')(x)
x = Dense(64, activation='relu')(x)
predictions = Dense(args.num_labels, activation='softmax')(x)
# this creates a model that includes
# the Input layer and three Dense layers
model = Model(input=input_image, output=predictions)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
return model
keras_functional_api.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录