def get_model(shape, dropout=0.5, path=None):
print('building neural network')
model=Sequential()
model.add(Convolution2D(512, 3, 3, border_mode='same', input_shape=shape))
model.add(Activation('relu'))
model.add(Convolution2D(512, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(SpatialDropout2D(dropout))
model.add(Flatten())#input_shape=shape))
# model.add(Dense(4096))
# model.add(Activation('relu'))
# model.add(Dropout(0.5))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
#model.add(Activation('linear'))
return model
评论列表
文章目录