def get_model(img_channels, img_width, img_height, dropout=0.5):
model = Sequential()
model.add(Convolution2D(32, 3, 3, input_shape=(
img_channels, img_width, img_height)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(dropout))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
评论列表
文章目录