def test_model_pipe_keras(self):
model = Sequential()
model.add(Flatten(input_shape=(1, 28, 28)))
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
p = model_util.ModelPipe()
input_data = [np.random.random((1, 1, 28, 28)) for _ in range(2)]
p.add(model.predict, batch_size=64, batcher=np.vstack)
expected_output = [
model.predict(
x.reshape(
(1, 1, 28, 28))) for x in input_data]
output = p.apply_ordered(input_data)
self.assertTrue(np.isclose(np.array(output).flatten(),
np.array(expected_output).flatten()).all())
评论列表
文章目录