def build_simpleCNN(input_shape = (32, 32, 3), num_output = 10):
h, w, nch = input_shape
assert h == w, 'expect input shape (h, w, nch), h == w'
images = Input(shape = (h, h, nch))
x = Conv2D(64, (4, 4), strides = (1, 1),
kernel_initializer = init, padding = 'same')(images)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size = (2, 2))(x)
x = Conv2D(128, (4, 4), strides = (1, 1),
kernel_initializer = init, padding = 'same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size = (2, 2))(x)
x = Flatten()(x)
outputs = Dense(num_output, kernel_initializer = init,
activation = 'softmax')(x)
model = Model(inputs = images, outputs = outputs)
return model
评论列表
文章目录