model.py 文件源码

python
阅读 25 收藏 0 点赞 0 评论 0

项目:deeppavlov 作者: deepmipt 项目源码 文件源码
def cnn_word_model(self):
        embed_input = Input(shape=(self.opt['max_sequence_length'], self.opt['embedding_dim'],))

        outputs = []
        for i in range(len(self.kernel_sizes)):
            output_i = Conv1D(self.opt['filters_cnn'], kernel_size=self.kernel_sizes[i], activation=None,
                              kernel_regularizer=l2(self.opt['regul_coef_conv']), padding='same')(embed_input)
            output_i = BatchNormalization()(output_i)
            output_i = Activation('relu')(output_i)
            output_i = GlobalMaxPooling1D()(output_i)
            outputs.append(output_i)

        output = concatenate(outputs, axis=1)
        output = Dropout(rate=self.opt['dropout_rate'])(output)
        output = Dense(self.opt['dense_dim'], activation=None,
                       kernel_regularizer=l2(self.opt['regul_coef_dense']))(output)
        output = BatchNormalization()(output)
        output = Activation('relu')(output)
        output = Dropout(rate=self.opt['dropout_rate'])(output)
        output = Dense(1, activation=None, kernel_regularizer=l2(self.opt['regul_coef_dense']))(output)
        output = BatchNormalization()(output)
        act_output = Activation('sigmoid')(output)
        model = Model(inputs=embed_input, outputs=act_output)
        return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号