def model_cnn(net_layers, input_shape):
inp = Input(shape=input_shape)
model = inp
for cl in net_layers['conv_layers']:
model = Conv2D(filters=cl[0], kernel_size=cl[1], activation='relu')(model)
if cl[4]:
model = MaxPooling2D()(model)
if cl[2]:
model = BatchNormalization()(model)
if cl[3]:
model = Dropout(0.2)(model)
model = Flatten()(model)
for dl in net_layers['dense_layers']:
model = Dense(dl[0])(model)
model = Activation('relu')(model)
if dl[1]:
model = BatchNormalization()(model)
if dl[2]:
model = Dropout(0.2)(model)
model = Dense(1)(model)
model = Activation('sigmoid')(model)
model = Model(inp, model)
return model
# %%
# LSTM architecture
# conv_layers -> [(filters, kernel_size, BatchNormaliztion, Dropout, MaxPooling)]
# dense_layers -> [(num_neurons, BatchNormaliztion, Dropout)]
train_nets.py 文件源码
python
阅读 24
收藏 0
点赞 0
评论 0
评论列表
文章目录