def _build(self,input_shape):
x = Input(shape=input_shape)
N = input_shape[0] // 2
y = Sequential([
flatten,
*[Sequential([BN(),
Dense(self.parameters['layer'],activation=self.parameters['activation']),
Dropout(self.parameters['dropout']),])
for i in range(self.parameters['num_layers']) ],
Dense(1,activation="sigmoid")
])(x)
self.loss = bce
self.net = Model(x, y)
# self.callbacks.append(self.linear_schedule([0.2,0.5], 0.1))
self.callbacks.append(GradientEarlyStopping(verbose=1,epoch=50,min_grad=self.parameters['min_grad']))
# self.custom_log_functions['lr'] = lambda: K.get_value(self.net.optimizer.lr)
评论列表
文章目录