improved_wgan.py 文件源码

python
阅读 40 收藏 0 点赞 0 评论 0

项目:keras-contrib 作者: farizrahman4u 项目源码 文件源码
def make_generator():
    """Creates a generator model that takes a 100-dimensional noise vector as a "seed", and outputs images
    of size 28x28x1."""
    model = Sequential()
    model.add(Dense(1024, input_dim=100))
    model.add(LeakyReLU())
    model.add(Dense(128 * 7 * 7))
    model.add(BatchNormalization())
    model.add(LeakyReLU())
    if K.image_data_format() == 'channels_first':
        model.add(Reshape((128, 7, 7), input_shape=(128 * 7 * 7,)))
        bn_axis = 1
    else:
        model.add(Reshape((7, 7, 128), input_shape=(128 * 7 * 7,)))
        bn_axis = -1
    model.add(Conv2DTranspose(128, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Convolution2D(64, (5, 5), padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Conv2DTranspose(64, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    # Because we normalized training inputs to lie in the range [-1, 1],
    # the tanh function should be used for the output of the generator to ensure its output
    # also lies in this range.
    model.add(Convolution2D(1, (5, 5), padding='same', activation='tanh'))
    return model
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号