def evaluate(experiment_path, meta_data=False, xml_dir="", train_dir="",
submission_file=""):
pickle_path = os.path.join(experiment_path, "predictions.pkl")
with open(pickle_path, 'rb') as input:
y_trues = pickle.load(input)
y_scores = pickle.load(input)
training_segments = pickle.load(input)
if meta_data:
elevation_scores = compute_elevation_scores(training_segments, xml_dir,
train_dir)
## Combine the scores using Bayes Thm.
normalize = np.array([np.sum(y_s * e_s) for y_s, e_s in zip(y_scores,
elevation_scores)])
y_scores = y_scores * elevation_scores / normalize[:, None]
if submission_file:
write_to_submission_file(submission_file, y_scores, training_segments,
train_dir)
return
map_score = mean_average_precision(y_trues, y_scores)
auroc_score = area_under_roc_curve(y_trues, y_scores)
# coverage error
coverage_error = metrics.coverage_error(y_trues, y_scores)
# label ranking average precision
lrap = metrics.label_ranking_average_precision_score(y_trues, y_scores)
# ranking loss
ranking_loss = metrics.label_ranking_loss(y_trues, y_scores)
print("")
print("- Top 1:", top_n(y_trues, y_scores, 1))
print("- Top 2:", top_n(y_trues, y_scores, 2))
print("- Top 3:", top_n(y_trues, y_scores, 3))
print("- Top 4:", top_n(y_trues, y_scores, 4))
print("- Top 5:", top_n(y_trues, y_scores, 5))
print("")
print("Mean Average Precision: ", map_score)
print("Area Under ROC Curve: ", auroc_score)
print("Coverage Error: ", coverage_error)
print("Label Ranking Average Precision: ", lrap)
print("Ranking Loss: ", ranking_loss)
print("Total predictions: ", len(y_scores))
return {
"map":map_score,
"auroc":auroc_score,
"coverage_error":coverage_error,
"lrap":lrap,
"ranking_loss": ranking_loss,
"top_1":top_n(y_trues, y_scores, 1),
"top_5":top_n(y_trues, y_scores, 5),
}
evaluate.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录