def _generate_classification_reports(y_true, y_pred, target_names=None):
# Calculate additional stats
total_accuracy = accuracy_score(y_true, y_pred)
cov_error = coverage_error(y_true, y_pred)
lrap = label_ranking_average_precision_score(y_true, y_pred)
report = metrics.multilabel_prediction_report(y_true, y_pred)
report += '\n\n'
report += metrics.multilabel_classification_report(y_true, y_pred, target_names=target_names)
report += '\n\n'
report += 'coverage error: %.3f' % cov_error
report += '\n'
report += 'LRAP: %.3f' % lrap
report += '\n'
report += 'total accuracy: %.3f' % total_accuracy
return report
# def run_train_test(path_train, path_test, args):
# print('Loading train data set "%s"...' % path_train)
# X_train, y_train, tags_train, _ = dataset.load_manifest(path_train)
#
# print('\nLoading test data set "%s" ...' % path_test)
# X_test, y_test, tags_test, _ = dataset.load_manifest(path_test)
#
# report_base_name = args.model + '_kfold_%d' % rnd
# validate(X_train, y_train, X_test, y_test, report_base_name, target_names=tags_train)
evaluate.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录