def generateEvaluation(self, output_dir, assigned_clusters, quick = False):
if quick:
self.silhouette_avg = 0
return
if self.distances is not None:
self.sample_silhouette_values = silhouette_samples(
self.distances, assigned_clusters,
metric = 'precomputed')
else:
self.sample_silhouette_values = silhouette_samples(self.instances.getFeatures(),
assigned_clusters)
self.silhouette_avg = np.mean(self.sample_silhouette_values)
self.printSilhouette(output_dir, assigned_clusters)
# Code from a scikit-learn example:
# Selecting the number of clusters with silhouette analysis on KMeans clustering
评论列表
文章目录