test_classification.py 文件源码

python
阅读 20 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def test_precision_recall_f1_score_with_an_empty_prediction():
    y_true = np.array([[0, 1, 0, 0], [1, 0, 0, 0], [0, 1, 1, 0]])
    y_pred = np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 1, 0]])

    # true_pos = [ 0.  1.  1.  0.]
    # false_pos = [ 0.  0.  0.  1.]
    # false_neg = [ 1.  1.  0.  0.]
    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average=None)
    assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2)
    assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2)
    assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2)
    assert_array_almost_equal(s, [1, 2, 1, 0], 2)

    f2 = fbeta_score(y_true, y_pred, beta=2, average=None)
    support = s
    assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2)

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="macro")
    assert_almost_equal(p, 0.5)
    assert_almost_equal(r, 1.5 / 4)
    assert_almost_equal(f, 2.5 / (4 * 1.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="macro"),
                        np.mean(f2))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="micro")
    assert_almost_equal(p, 2 / 3)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5))
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="micro"),
                        (1 + 4) * p * r / (4 * p + r))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="weighted")
    assert_almost_equal(p, 3 / 4)
    assert_almost_equal(r, 0.5)
    assert_almost_equal(f, (2 / 1.5 + 1) / 4)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="weighted"),
                        np.average(f2, weights=support))

    p, r, f, s = precision_recall_fscore_support(y_true, y_pred,
                                                 average="samples")
    # |h(x_i) inter y_i | = [0, 0, 2]
    # |y_i| = [1, 1, 2]
    # |h(x_i)| = [0, 1, 2]
    assert_almost_equal(p, 1 / 3)
    assert_almost_equal(r, 1 / 3)
    assert_almost_equal(f, 1 / 3)
    assert_equal(s, None)
    assert_almost_equal(fbeta_score(y_true, y_pred, beta=2,
                                    average="samples"),
                        0.333, 2)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号