def gs_Ridge(xM, yV, alphas_log=(1, -1, 9), n_folds=5, n_jobs=-1, scoring='r2'):
"""
Parameters
-------------
scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
"""
print('If scoring is not r2 but error metric, output score is revered for scoring!')
print(xM.shape, yV.shape)
clf = linear_model.Ridge()
#parmas = {'alpha': np.logspace(1, -1, 9)}
parmas = {'alpha': np.logspace(*alphas_log)}
kf_n_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
kf_n = kf_n_c.split(xM)
gs = model_selection.GridSearchCV(
clf, parmas, scoring=scoring, cv=kf_n, n_jobs=n_jobs)
gs.fit(xM, yV)
return gs
评论列表
文章目录