def score_simulation(h5_file):
print("Opening/creating database file")
tsdatabase = TimeSeriesData(h5_file)
nreps = int((tsdatabase.h5_table["timeseries/indptr"].shape[0]-1)/6)
#Items belonging in the same cluster are next to one another
true_labels = [0]*nreps+[1]*nreps+[2]*nreps+[3]*nreps+[4]*nreps+[5]*nreps
#Order is: drop, rise, normal, noisy, conditionally rare, seasonal
max_ami = 0
for i in range(tsdatabase.h5_table["genes/clusters"].shape[1]):
pred_labels = tsdatabase.get_cluster_labels(i)
ami = metrics.adjusted_mutual_info_score(true_labels, pred_labels)
if (ami > max_ami):
max_ami = ami
print("Maximum AMI of clusters is: %f" % (max_ami,))
评论列表
文章目录