def test_Kmeans_nclusters(*data):
'''
test the performance with different n_clusters
:param data: data, target
:return: None
'''
X,labels_true=data
nums=range(1,50)
ARIs=[]
Distances=[]
for num in nums:
clst=cluster.KMeans(n_clusters=num)
clst.fit(X)
predicted_labels=clst.predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
Distances.append(clst.inertia_)
## graph
fig=plt.figure()
ax=fig.add_subplot(1,2,1)
ax.plot(nums,ARIs,marker="+")
ax.set_xlabel("n_clusters")
ax.set_ylabel("ARI")
ax=fig.add_subplot(1,2,2)
ax.plot(nums,Distances,marker='o')
ax.set_xlabel("n_clusters")
ax.set_ylabel("inertia_")
fig.suptitle("KMeans")
plt.show()
评论列表
文章目录