def column_average_ari(Zv, Zc, cc_state_object):
from sklearn.metrics import adjusted_rand_score
ari = 0
n_cols = len(Zv)
for col in xrange(n_cols):
view_t = Zv[col]
Zc_true = Zc[view_t]
view_i = cc_state_object.Zv[col]
Zc_inferred = cc_state_object.views[view_i].Z.tolist()
ari += adjusted_rand_score(Zc_true, Zc_inferred)
return ari/float(n_cols)
评论列表
文章目录