elbow.py 文件源码

python
阅读 19 收藏 0 点赞 0 评论 0

项目:yellowbrick 作者: DistrictDataLabs 项目源码 文件源码
def distortion_score(X, labels, metric='euclidean'):
    """
    Compute the mean distortion of all samples.

    The distortion is computed as the the sum of the squared distances between
    each observation and its closest centroid. Logically, this is the metric
    that K-Means attempts to minimize as it is fitting the model.

    .. seealso:: http://kldavenport.com/the-cost-function-of-k-means/

    Parameters
    ----------
    X : array, shape = [n_samples, n_features] or [n_samples_a, n_samples_a]
        Array of pairwise distances between samples if metric == "precomputed"
        or a feature array for computing distances against the labels.

    labels : array, shape = [n_samples]
        Predicted labels for each sample

    metric : string
        The metric to use when calculating distance between instances in a
        feature array. If metric is a string, it must be one of the options
        allowed by `sklearn.metrics.pairwise.pairwise_distances
        <http://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_distances.html#sklearn.metrics.pairwise.pairwise_distances>`_

    .. todo:: add sample_size and random_state kwds similar to silhouette_score
    """
    # Encode labels to get unique centers and groups
    le = LabelEncoder()
    labels = le.fit_transform(labels)
    unique_labels = le.classes_

    # Sum of the distortions
    distortion = 0

    # Loop through each label (center) to compute the centroid
    for current_label in unique_labels:
        # Mask the instances that belong to the current label
        mask = labels == current_label
        instances = X[mask]

        # Compute the center of these instances
        center = instances.mean(axis=0)

        # Compute the square distances from the instances to the center
        distances = pairwise_distances(instances, [center], metric=metric)
        distances = distances ** 2

        # Add the mean square distance to the distortion
        distortion += distances.mean()

    return distortion


##########################################################################
## Elbow Method
##########################################################################
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号