def kmeans(reduced_data, n_clusters):
#----Do KMeans clustering and return relevant graphing/performance data
kmeans = cluster.KMeans(n_clusters=n_clusters, random_state=42)
kmeans = kmeans.fit(reduced_data)
sil_score = metrics.silhouette_score(reduced_data, kmeans.labels_, metric='euclidean')
data_dictionary = {
"labels": kmeans.labels_,
"centroids": kmeans.cluster_centers_,
"silhouette_score": sil_score
}
return data_dictionary
评论列表
文章目录