def cluster2d(data, n_clusters):
reduced_data = reduce_with_pca(data)
kmeans = KMeans(n_clusters = n_clusters, random_state=0).fit(reduced_data)
print 'K-Means'
print collections.Counter(kmeans.labels_)
print metrics.silhouette_score(data, kmeans.labels_)
plot_2d_data(reduced_data, kmeans.labels_)
评论列表
文章目录