def test_mat(data, label, model):
prediction1 = model[0].predict(data)
prediction2 = model[1].predict(data)
#return float(np.logical_and(prediction1 == label[:, 0], prediction2 == label[:, 1]).sum()) / len(label)
label = label[:, 0] * 100 + label[:, 1]
prediction = prediction1 * 100 + prediction2
pre, rec, f1, support = metrics.precision_recall_fscore_support(label, prediction)
f1 = (100*sum(f1[1:] * support[1:])/sum(support[1:]))
return f1
评论列表
文章目录