def regression(filename):
from sklearn.cross_validation import train_test_split
print(filename)
X,y = loadDataSet(filename)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
from sklearn.linear_model import LinearRegression
from sklearn import metrics
linreg = LinearRegression()
linreg.fit(X_train, y_train)
# print(linreg.intercept_, linreg.coef_)
# pair the feature names with the coefficients
feature_cols = ['????', '????', '??????','?????','??????','???????','???????','?????????','??????']
#print(feature_cols, linreg.coef_)
#zip(feature_cols, linreg.coef_)
y_pred = linreg.predict(X_test)
print("MAE:",metrics.mean_absolute_error(y_test, y_pred))
print("MSE:",metrics.mean_squared_error(y_test, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
scores = cross_val_score(linreg, X, y,cv=5)
# print(filename)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
res = pd.DataFrame(linreg.coef_,columns=feature_cols,index=[filename])
return (res)
#files = ['?????3?.xlsx','?????4?.xlsx','?????5?.xlsx','?????6?.xlsx']
评论列表
文章目录