def train_and_eval_sklearn_regressor( clf, data ):
x_train = data['x_train']
y_train = data['y_train']
x_test = data['x_test']
y_test = data['y_test']
clf.fit( x_train, y_train )
p = clf.predict( x_train )
mse = MSE( y_train, p )
rmse = sqrt( mse )
mae = MAE( y_train, p )
print "\n# training | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )
#
p = clf.predict( x_test )
mse = MSE( y_test, p )
rmse = sqrt( mse )
mae = MAE( y_test, p )
print "# testing | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )
return { 'loss': rmse, 'rmse': rmse, 'mae': mae }
评论列表
文章目录