def recall_at_precision(*args, **kwargs):
from sklearn.metrics import precision_recall_curve
metric_param = kwargs.pop('metric_param')
required_precision = _parse_number_or_fraction(metric_param)
precision, recall, thresholds = precision_recall_curve(*args, **kwargs)
for pr, r in izip(precision, recall):
if pr >= required_precision:
return r
评论列表
文章目录