def Precision(clf):
doc_class_predicted = clf.predict(x_test)
print(np.mean(doc_class_predicted == y_test))#?????????
#???????
precision, recall, thresholds = precision_recall_curve(y_test, clf.predict(x_test))
answer = clf.predict_proba(x_test)[:,1]
report = answer > 0.5
print(classification_report(y_test, report, target_names = ['neg', 'pos']))
print("--------------------")
from sklearn.metrics import accuracy_score
print('???: %.2f' % accuracy_score(y_test, doc_class_predicted))
评论列表
文章目录