generic_classifier.py 文件源码

python
阅读 24 收藏 0 点赞 0 评论 0

项目:2020plus 作者: KarchinLab 项目源码 文件源码
def _update_tsg_metrics(self, y_true, y_pred, prob):
        self.tsg_gene_pred = pd.Series(y_pred, self.y.index)
        self.tsg_gene_score = pd.Series(prob, self.y.index)

        # compute metrics for classification
        self.tsg_gene_count[self.num_pred] = sum(y_pred)
        prec, recall, fscore, support = metrics.precision_recall_fscore_support(y_true, y_pred)
        tsg_col = 1  # column for metrics relate to tsg
        self.tsg_precision[self.num_pred] = prec[tsg_col]
        self.tsg_recall[self.num_pred] = recall[tsg_col]
        self.tsg_f1_score[self.num_pred] = fscore[tsg_col]
        self.logger.debug('Tsg Iter %d: Precission=%s, Recall=%s, f1_score=%s' % (
                          self.num_pred + 1, str(prec), str(recall), str(fscore)))

        # compute ROC curve metrics
        fpr, tpr, thresholds = metrics.roc_curve(y_true, prob)
        self.tsg_tpr_array[self.num_pred, :] = interp(self.tsg_fpr_array, fpr, tpr)
        #self.tsg_tpr_array[0] = 0.0

        # compute Precision-Recall curve metrics
        p, r, thresh = metrics.precision_recall_curve(y_true, prob)
        p, r, thresh = p[::-1], r[::-1], thresh[::-1]  # reverse order of results
        self.tsg_precision_array[self.num_pred, :] = interp(self.tsg_recall_array, r, p)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号