def compute_ap(class_score_matrix, labels):
num_classes=class_score_matrix.shape[1]
one_hot_labels=dense_to_one_hot(labels, num_classes)
predictions=np.array(class_score_matrix>0, dtype="int32")
average_precision=[]
for i in range(num_classes):
ps=average_precision_score(one_hot_labels[:, i], class_score_matrix[:, i])
# if not np.isnan(ps):
average_precision.append(ps)
return np.array(average_precision)
评论列表
文章目录