def report_metrics(y_dset, y_pred, batch_size, dset='Val'):
# Print additional metrics involving predictions
n_rows = (y_dset.shape[0] / batch_size) * batch_size
y_true = y_dset[0:n_rows, :].flatten()
y_pred = y_pred.flatten()
val_ap = average_precision_score(y_true, y_pred)
val_roc = roc_auc_score(y_true, y_pred)
n = y_true.size
n_pos = y_true.sum()
idx_sorted = np.argsort(-y_pred)
val_rec = []
logging.info(dset + "-AP {:.6f}".format(val_ap))
logging.info(dset + "-ROC {:.6f}".format(val_roc))
for i, v in enumerate([10, 25, 50, 75, 100]):
tp = y_true[idx_sorted[:int(v * n / 100)]].sum()
val_rec.append(tp * 1.0 / n_pos)
logging.info(dset + "-R{} {:.6f}".format(v, val_rec[i]))
return val_ap, val_rec[2]
# ############################## Main program #################################
评论列表
文章目录