def parse_args():
parser = argparse.ArgumentParser(description="Run FM.")
parser.add_argument('--path', nargs='?', default='./data/',
help='Input data path.')
parser.add_argument('--dataset', nargs='?', default='frappe',
help='Choose a dataset.')
parser.add_argument('--epoch', type=int, default=100,
help='Number of epochs.')
parser.add_argument('--pretrain', type=int, default=-1,
help='flag for pretrain. 1: initialize from pretrain; 0: randomly initialize; -1: save the model to pretrain file')
parser.add_argument('--batch_size', type=int, default=128,
help='Batch size.')
parser.add_argument('--hidden_factor', type=int, default=64,
help='Number of hidden factors.')
parser.add_argument('--lamda', type=float, default=0,
help='Regularizer for bilinear part.')
parser.add_argument('--keep_prob', type=float, default=0.5,
help='Keep probility (1-dropout_ratio) for the Bi-Interaction layer. 1: no dropout')
parser.add_argument('--lr', type=float, default=0.05,
help='Learning rate.')
parser.add_argument('--loss_type', nargs='?', default='square_loss',
help='Specify a loss type (square_loss or log_loss).')
parser.add_argument('--optimizer', nargs='?', default='AdagradOptimizer',
help='Specify an optimizer type (AdamOptimizer, AdagradOptimizer, GradientDescentOptimizer, MomentumOptimizer).')
parser.add_argument('--verbose', type=int, default=1,
help='Show the results per X epochs (0, 1 ... any positive integer)')
parser.add_argument('--batch_norm', type=int, default=0,
help='Whether to perform batch normaization (0 or 1)')
return parser.parse_args()
评论列表
文章目录