def runET(train_X, train_y, test_X, test_y=None, validation=1, n_est_val=50, depth_val=None, split_val=2, leaf_val=1, feat_val='auto', jobs_val=4, random_state_val=0):
clf = ensemble.ExtraTreesClassifier(
n_estimators = n_est_val,
max_depth = depth_val,
min_samples_split = split_val,
min_samples_leaf = leaf_val,
max_features = feat_val,
criterion='entropy',
n_jobs = jobs_val,
random_state = random_state_val)
clf.fit(train_X, train_y)
pred_train_y = clf.predict_proba(train_X)[:,1]
pred_test_y = clf.predict_proba(test_X)[:,1]
if validation:
train_loss = log_loss(train_y, pred_train_y)
loss = log_loss(test_y, pred_test_y)
print "Train, Test loss : ", train_loss, loss
return pred_test_y, loss
else:
return pred_test_y
bayesian_encode_fourlevel_withint.py 文件源码
python
阅读 20
收藏 0
点赞 0
评论 0
评论列表
文章目录