def MyEvaluation(y_test,predicted):
def norm_me(x):
if str(type(x)).find("int")>-1:
return x
zix = np.argmax(x)
x1 = [0]*len(x)
x1[zix] = 1
return x1
predicted = [norm_me(x) for x in predicted]
predicted = np.array(predicted,dtype="uint8")
target_names = ['normal','malware']
inv_map = {v: k for k, v in KLABEL.items()}
target_names = [inv_map[x] for x in range(WORKING_KLABEL)]
result = classification_report(y_test,predicted,target_names=target_names)
print result
averagelabel = 'binary'
if B_MULTICLASS: averaegelabel = "macro"
v_precision = precision_score(y_test,predicted, average=averagelabel)
v_recall = recall_score(y_test,predicted, average=averagelabel)
(TP, FP, TN, FN) = perf_measure(y_test, predicted,KLABEL["malicious"])
return v_precision,v_recall,TP, FP, TN, FN
评论列表
文章目录