def RFEnsemble(train_x, train_y, test_x, test_y):
""" ???? ?? """
total = np.zeros(len(test_y))
sub_num = 10
for i in range(sub_num):
sub_train_x, sub_train_y = sub_sample(train_x, train_y)
pred = sub_RF(sub_train_x, sub_train_y, test_x, test_y)
total += pred
avg_pred = total / sub_num
avg_predict = []
for i in range(len(avg_pred)):
if avg_pred[i] < 0.5:
avg_predict.append(0)
else:
avg_predict.append(1)
auc = evaluate_auc(avg_pred, test_y)
evaluate(avg_predict, test_y)
return auc
评论列表
文章目录