def get_pr(reference_frames,output_frames,mode='type',pr_resolution=100):
# filter output by confidence
confidence = collect_confidence(output_frames)
conf_order = []
step = 100/float(pr_resolution)
for j in range(1,pr_resolution+1):
conf_order.append( np.percentile(confidence, j*step) )
conf_order = [-1] + conf_order + [2]
# get curve
params = []
for threshold in conf_order:
params.append( [ reference_frames, output_frames, confidence, threshold, mode ] )
all_tp, all_fp, all_fn, all_prec, all_rec = zip(*pool.map(single_point, params))
all_prec = list(all_prec) #+ [0]
all_rec = list(all_rec) #+ [1]
all_rec, all_prec = zip(*sorted(zip(all_rec, all_prec)))
AUC = metrics.auc(all_rec, all_prec)
return all_rec, all_prec, AUC
# create complete output for 1 mode --------------------------------------------
speech_eval_old.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录