def bidirectional_gru(len_output):
# sequence_input is a matrix of glove vectors (one for each input word)
sequence_input = Input(
shape=(MAX_SEQUENCE_LENGTH, EMBEDDING_DIM,), dtype='float32')
l_lstm = Bidirectional(GRU(100))(sequence_input)
# TODO look call(input_at_t, states_at_t) method, returning (output_at_t, states_at_t_plus_1)
# also look at switch(condition, then_expression, else_expression) for deciding when to feed previous state
preds = Dense(len_output, activation='softmax')(l_lstm)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=[utils.f1_score, 'categorical_accuracy'])
return model
# required, see values below
评论列表
文章目录