def analyzeResult_temp(data,model,DataVecs):
predict = model.predict(DataVecs)
data['predict'] = predict
print ("Accuracy: %f %%" % (100. * sum(data["label"] == data["predict"]) / len(data["label"])))
answer1 = data[data["label"] == 1]
answer2 = data[data["label"] == 0]
print ("Positive Accuracy: %f %%" % (100. * sum(answer1["label"] == answer1["predict"]) / len(answer1["label"])))
print ("Negative Accuracy: %f %%" % (100. * sum(answer2["label"] == answer2["predict"]) / len(answer2["label"])))
try:
result_auc = model.predict_proba(DataVecs)
print ("Roc:%f\nAUPR:%f\n" % (roc_auc_score(data["label"],result_auc[:,1]),
average_precision_score(data["label"],result_auc[:,1])))
print("Precision:%f\nRecall:%f\nF1score:%f\nMCC:%f\n" %(precision_score(data["label"],data["predict"]),
recall_score(data["label"],data["predict"]),
f1_score(data["label"],data["predict"]),
matthews_corrcoef(data["label"],data["predict"])))
except:
print "ROC unavailable"
# Performance evaluation and result analysis uing adjusted thresholds
评论列表
文章目录