def _cross_val_score_loo_r0( lm, X, y):
"""
mean_square_error metric is used from sklearn.metric.
Return
--------
The mean squared error values are returned.
"""
if len( y.shape) == 1:
y = np.array( [y]).T
kf = cross_validation.LeaveOneOut( y.shape[0])
score_l = list()
for tr, te in kf:
lm.fit( X[tr,:], y[tr,:])
yp = lm.predict( X[te, :])
score_l.append( metrics.mean_squared_error( y[te,:], yp))
return score_l
评论列表
文章目录