stable_feature_ranking.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:pub 作者: drcannady 项目源码 文件源码
def _raw_rank(self, x, y, network):
        impt = np.zeros(x.shape[1])

        for i in range(x.shape[1]):
            hold = np.array(x[:, i])
            np.random.shuffle(x[:, i])

            # Handle both TensorFlow and SK-Learn models.
            if 'tensorflow' in str(type(network)).lower():
                pred = list(network.predict(x, as_iterable=True))
            else:
                pred = network.predict(x)

            rmse = metrics.mean_squared_error(y, pred)
            impt[i] = rmse
            x[:, i] = hold

        return impt
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号