def _raw_rank(self, x, y, network):
impt = np.zeros(x.shape[1])
for i in range(x.shape[1]):
hold = np.array(x[:, i])
np.random.shuffle(x[:, i])
# Handle both TensorFlow and SK-Learn models.
if 'tensorflow' in str(type(network)).lower():
pred = list(network.predict(x, as_iterable=True))
else:
pred = network.predict(x)
rmse = metrics.mean_squared_error(y, pred)
impt[i] = rmse
x[:, i] = hold
return impt
评论列表
文章目录