def arima(series, durations, order):
X = series.values
size = int(len(X) * 0.99)
train, test = X[0:size], X[size:len(X)]
history = [x for x in train]
predictions = list()
for t in range(len(test)):
model = ARIMA(history, order=(5,1,0))
model_fit = model.fit(disp=0)
output = model_fit.forecast()
yhat = output[0]
predictions.append(yhat)
obs = test[t]
history.append(obs)
print('predicted=%f, expected=%f' % (yhat, obs))
error = mean_squared_error(test, predictions)
print('Test MSE: %.3f' % error)
return predictions
# plot
arima.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录