code.py 文件源码

python
阅读 28 收藏 0 点赞 0 评论 0

项目:The_Ultimate_Student_Hunt 作者: analyticsvidhya 项目源码 文件源码
def run_model(model,dtrain,predictor_var,target,scoring_method='mean_squared_error'):
    cv_method = KFold(len(dtrain),5)
    cv_scores = cross_val_score(model,dtrain[predictor_var],dtrain[target],cv=cv_method,scoring=scoring_method)
    #print cv_scores, np.mean(cv_scores), np.sqrt((-1)*np.mean(cv_scores))

    dtrain_for_val = dtrain[dtrain['Year']<2000]
    dtest_for_val = dtrain[dtrain['Year']>1999]
    #cv_method = KFold(len(dtrain_for_val),5)
    #cv_scores_2 = cross_val_score(model,dtrain_for_val[predictor_var],dtrain_for_val[target],cv=cv_method,scoring=scoring_method)
    #print cv_scores_2, np.mean(cv_scores_2)

    dtrain_for_val_ini = dtrain_for_val[predictor_var]
    dtest_for_val_ini = dtest_for_val[predictor_var]
    model.fit(dtrain_for_val_ini,dtrain_for_val[target])
    pred_for_val = model.predict(dtest_for_val_ini)

    #print math.sqrt(mean_squared_error(dtest_for_val['Footfall'],pred_for_val))
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号