knn_scikit.py 文件源码

python
阅读 23 收藏 0 点赞 0 评论 0

项目:Photometric-Redshifts 作者: martiansideofthemoon 项目源码 文件源码
def k_vs_rms(START_K, END_K, STEP_K, training_data, labels, test_data, expected_labels, weights='distance'):
    num_points = int((END_K - START_K) / STEP_K) + 1
    points = np.zeros([num_points, 2])
    index = -1
    for K in range(START_K, END_K, STEP_K):
        print "k = " + str(K)
        index += 1
        output = knn_regression(K, training_data, labels, test_data, weights)
        v = np.column_stack((output, expected_labels))
        v = v[~np.isnan(v[:,0]),:]
        RMSE = mean_squared_error(v[:,0], v[:,1])**0.5
        points[index,0] = K
        points[index,1] = RMSE
    if points[-1,0] == 0 and points[-1,1] == 0:
        points = points[:-1,:]
    return points

# Test parameters
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号