def test_random_starts():
# not as strong a test as the direct case!
# using training error here, and a higher threshold.
# We observe the lifted solver reaches rather diff. solutions.
degree = 3
noisy_y = _lifted_predict(U[:degree], X)
noisy_y += 5. * rng.randn(noisy_y.shape[0])
common_settings = dict(degree=degree, n_components=n_components,
beta=0.01, tol=0.01)
scores = []
for k in range(5):
est = PolynomialNetworkRegressor(random_state=k, **common_settings)
y_pred = est.fit(X, noisy_y).predict(X)
scores.append(mean_squared_error(noisy_y, y_pred))
assert_less_equal(np.std(scores), 1e-4)
test_polynomial_network.py 文件源码
python
阅读 26
收藏 0
点赞 0
评论 0
评论列表
文章目录