def check_improve(degree):
y = _lifted_predict(U[:degree], X)
common_settings = dict(degree=degree, n_components=n_components,
beta=1e-10, tol=0, random_state=0)
est_5 = PolynomialNetworkRegressor(max_iter=5, **common_settings)
est_10 = PolynomialNetworkRegressor(max_iter=10, **common_settings)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
est_5.fit(X, y)
est_10.fit(X, y)
y_pred_5 = est_5.predict(X)
y_pred_10 = est_10.predict(X)
assert_less_equal(mean_squared_error(y, y_pred_10),
mean_squared_error(y, y_pred_5),
msg="More iterations do not improve fit.")
test_polynomial_network.py 文件源码
python
阅读 22
收藏 0
点赞 0
评论 0
评论列表
文章目录