def predict(self):
# predict the test data
y_pred1 = self.net1.predict(self.X_test)
y_pred1 = y_pred1.reshape((y_pred1.shape[0], 1))
y_pred2 = self.linRegr.predict(self.X_test)
y_pred2 = y_pred2.reshape((y_pred2.shape[0], 1))
y_pred3 = self.knn.predict(self.X_test)
y_pred3 = y_pred3.reshape((y_pred3.shape[0], 1))
y_pred4 = self.decisionTree.predict(self.X_test)
y_pred4 = y_pred4.reshape((y_pred4.shape[0], 1))
y_pred5 = self.adaReg.predict(self.X_test)
y_pred5 = y_pred5.reshape((y_pred5.shape[0], 1))
self.y_pred = (y_pred1+y_pred2+y_pred3+y_pred4+y_pred5)/5
# print MSE
mse = mean_squared_error(self.y_pred, self.y_test)
print "MSE: {}".format(mse)
RegressionUniformBlending.py 文件源码
python
阅读 35
收藏 0
点赞 0
评论 0
评论列表
文章目录