def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'max_features': ['sqrt', 'log2', None],
'max_depth': range(2,1000),
}
]
reg = GridSearchCV(DecisionTreeRegressor(), tuned_parameters, cv=5, scoring='mean_squared_error')
reg.fit(self.X_train, self.y_train)
print "Best parameters set found on development set:\n"
print reg.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in reg.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print "MSE for test data set:\n"
y_true, y_pred = self.y_test, reg.predict(self.X_test)
print mean_squared_error(y_true, y_pred)
RegressionDecisionTree.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录