def after_test(self):
scores_test=[]
scores_train=[]
scores_test_mse = []
scores_train_mse = []
for i, y_pred in enumerate(self.clf.staged_predict(self.X_test)):
scores_test.append(mean_absolute_percentage_error(self.y_test, y_pred))
scores_test_mse.append(mean_squared_error(self.y_test, y_pred))
for i, y_pred in enumerate(self.clf.staged_predict(self.X_train)):
scores_train.append(mean_absolute_percentage_error(self.y_train, y_pred))
scores_train_mse.append(mean_squared_error(self.y_train, y_pred))
pd.DataFrame({'scores_train': scores_train, 'scores_test': scores_test,'scores_train_mse': scores_train_mse, 'scores_test_mse': scores_test_mse}).to_csv('temp/trend.csv')
df = pd.DataFrame({'scores_train': scores_train, 'scores_test': scores_test})
print "Test set MAPE minimum: {}".format(np.array(scores_test).min())
# df.plot()
# plt.show()
return
gradientboostingmodel.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录