def on_epoch_end(self, epoch, logs={}):
import numpy as np
from sklearn.metrics import recall_score, precision_score, roc_auc_score, f1_score
y_pred = self.model.predict(self.X_val)
y_pred = np.argmax(y_pred, axis=1)
recall = recall_score(self.y_val, y_pred, average=None).mean()
self.recall.append(recall)
logs['recall'] = recall
precision = precision_score(self.y_val, y_pred, average=None).mean()
self.precision.append(precision)
logs['precision'] = precision
auc = roc_auc_score(self.y_val, y_pred, average=None).mean()
self.auc.append(auc)
logs['auc'] = auc
f1 = f1_score(self.y_val, y_pred, average=None).mean()
self.f1.append(f1)
logs['f1'] = f1
callbacks.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录