def evaluate(self):
for scores in self.em.fit(self.X, self.cats, iterations=100, learning_rate=1.0):
print np.mean(scores)
for p in self.em.kernel.params:
print p, p.get_value()
auc = roc_auc_score(self.cats.reshape(-1), result)
acc = accuracy_score(self.cats, result > 0.5)
for i in xrange(result.shape[0]):
print('%d: %.2e' % (self.cats.reshape(-1)[i], result[i]))
print('Time %.2f millisec' % (t * 1000.0))
print('AUC: %.3f' % auc)
return acc, auc
评论列表
文章目录