def test_mlp():
y_train_onehot = one_hot(y_train)
y_test_onehot = one_hot(y_test)
model = NeuralNet(
layers=[
Dense(256, Parameters(init='uniform', regularizers={'W': L2(0.05)})),
Activation('relu'),
Dropout(0.5),
Dense(128, Parameters(init='normal', constraints={'W': MaxNorm()})),
Activation('relu'),
Dense(2),
Activation('softmax'),
],
loss='categorical_crossentropy',
optimizer=Adadelta(),
metric='accuracy',
batch_size=64,
max_epochs=25,
)
model.fit(X_train, y_train_onehot)
predictions = model.predict(X_test)
assert roc_auc_score(y_test_onehot[:, 0], predictions[:, 0]) >= 0.95
test_classification_accuracy.py 文件源码
python
阅读 18
收藏 0
点赞 0
评论 0
评论列表
文章目录