def run_train_with_model(train, features, model_path):
start_time = time.time()
gbm = xgb.Booster()
gbm.load_model(model_path)
print("Validating...")
check = gbm.predict(xgb.DMatrix(train[features]))
score = roc_auc_score(train['isDuplicate'].values, check)
validation_df = pd.DataFrame({'itemID_1': train['itemID_1'].values, 'itemID_2': train['itemID_2'].values,
'isDuplicate': train['isDuplicate'].values, 'probability': check})
print('AUC score value: {:.6f}'.format(score))
imp = get_importance(gbm, features)
print('Importance array: ', imp)
print('Prediction time: {} minutes'.format(round((time.time() - start_time)/60, 2)))
return validation_df, score
s12_run_xgboost_only_train_create.py 文件源码
python
阅读 19
收藏 0
点赞 0
评论 0
评论列表
文章目录