def on_epoch_end(self, epoch, logs={}):
if epoch % self.interval == 0:
y_pred = self.model.predict(self.X_val, verbose=0)
#print(np.sum(y_pred[:,1]))
#y_true = np.argmax(self.y_val, axis=1)
#y_pred = np.argmax(y_pred, axis=1)
#print(y_true.shape, y_pred.shape)
if self.mymil:
score = roc_auc_score(self.y_val.max(axis=1), y_pred.max(axis=1))
else: score = roc_auc_score(self.y_val[:,1], y_pred[:,1])
print("interval evaluation - epoch: {:d} - auc: {:.2f}".format(epoch, score))
if score > self.auc:
self.auc = score
for f in os.listdir('./'):
if f.startswith(self.filepath+'auc'):
os.remove(f)
self.model.save(self.filepath+'auc'+str(score)+'ep'+str(epoch)+'.hdf5')
roc_auc.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录